

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics

Thermodynamics - does a reaction take place?
Kinetics - how fast does a reaction proceed?
Reaction rate is the change in the concentration of a reactant or a product with time (M / s).

$$
A \longrightarrow B
$$

$$
\begin{array}{ll}
\text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} & \Delta[\mathrm{~A}]=\begin{array}{l}
\text { change in concentration of } \mathrm{A} \text { over } \\
\text { time period } \Delta t
\end{array} \\
\text { rate }=\frac{\Delta[\mathrm{B}]}{\Delta t} & \Delta[\mathrm{~B}]=\begin{array}{l}
\text { change in concentration of } \mathrm{B} \text { over } \\
\text { time period } \Delta t
\end{array}
\end{array}
$$

Because $[A]$ decreases with time, $\Delta[A]$ is negative.
$A \longrightarrow B$

$\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)$

time

$\Delta\left[\mathrm{Br}_{2}\right] \propto \Delta$ Absorption

$\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)$

average rate $=-\frac{\Delta\left[\mathrm{Br}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{Br}_{2}\right]_{\text {final }}-\left[\mathrm{Br}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
instantaneous rate $=$ rate for specific instance in time

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g)
$$

$$
\begin{gathered}
P V=n R T \\
P=\frac{n}{V} R T=\left[\mathrm{O}_{2}\right] R T \\
{\left[\mathrm{O}_{2}\right]=\frac{1}{R T} P}
\end{gathered}
$$

$$
\text { rate }=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{R T} \frac{\Delta \mathrm{P}}{\Delta t}
$$

measure ΔP over time

$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$

Reaction Rates and Stoichiometry

$$
2 \mathrm{~A} \longrightarrow \mathrm{~B}
$$

Two moles of A disappear for each mole of B that is formed.

$$
\begin{gathered}
\text { rate }=-\frac{1}{2} \frac{\Delta[\mathrm{~A}]}{\Delta t} \quad \text { rate }=\frac{\Delta[\mathrm{B}]}{\Delta t} \\
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\text { rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}
\end{gathered}
$$

Write the rate expression for the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \varnothing_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
rate $=-\frac{\Delta\left[\mathrm{CH}_{4}\right]}{\Delta t}=-\frac{1}{2} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{CO}_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{\Delta t}$

The Rate Law

The rate law expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$
\begin{gathered}
\mathrm{aA}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\text { Rate }=k[\mathrm{AQ}
\end{gathered}
$$

reaction is x th order in A reaction is y th order in B reaction is $(x+y)$ th order overall

$$
\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{ClO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{FClO}_{2}(\mathrm{~g})
$$

rate $=k\left[F_{2}\right]^{x}\left[\mathrm{ClO}_{2}\right]^{y}$

$$
\begin{aligned}
& 2.4 \times 10^{-3}=k[0.2]^{\times}[0.01]^{y} \\
& 1.2 \times 10^{-3}=k[0.1]^{\times}[0.01]^{y}
\end{aligned}
$$

Table 13.2 Rate Data for the Reaction between F_{2} and ClO_{2}
$\left[\mathrm{F}_{2}\right](\mathrm{M}) \quad\left[\mathrm{ClO}_{2}\right](\mathrm{M}) \quad$ Initial Rate $(\mathrm{M} / \mathrm{s})$

1.0 .10	0.010
2.0 .10	0.040
3.0 .20	0.010

$2=2^{x} \quad X=1$
$4.8 \times 10^{-3}=k[0.1]^{x}[0.04]^{y}$
$1.2 \times 10^{-3}=k[0.1]^{x}[0.01]^{y}$

$$
4=4^{y} \quad y=1
$$

rate $=k\left[\mathrm{~F}_{2}\right]\left[\mathrm{ClO}_{2}\right]$

 $K=\operatorname{rate} /\left[\mathrm{F}_{2}\right]\left[\mathrm{ClO}_{2}\right]$
Rate Laws

- Rate laws are always determined experimentally.
- Reaction order is always defined in terms of reactant (not product) concentrations.
- The order of a reactant is not related to the stoichiometric coefficient of the reactant in the balanced chemical equation.

$$
\begin{gathered}
\mathrm{F}_{2}(g)+2 \mathrm{ClO}_{2}(g) \longrightarrow 2 \mathrm{FClO}_{2}(g) \\
\text { rate }=k\left[\mathrm{~F}_{2}\right]\left[\mathrm{ClO}_{2} \mathrm{P}\right.
\end{gathered}
$$

Determine the rate law and calculate the rate constant for the following reaction from the following data:
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+3 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}(a q)+\mathrm{I}_{3}{ }^{-}(\mathrm{aq})$

Experiment	$\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$	$[l-]$	Initial Rate (M / s)
1	0.08	0.034	2.2×10^{-4}
2	0.08	0.017	1.1×10^{-4} rate $=k\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2}\right]^{2}\left[[l-]^{y}\right.$ $y=1$ $x=1$
3	0.16	0.017	2.2×10^{-4}

Double [$[1]$, rate doubles (experiment $1 \& 2$)
Double $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2}\right]$, rate doubles (experiment $2 \& 3$)

$$
k=\frac{\text { rate }}{\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[{ }^{-1}\right]}=\frac{2.2 \times 10^{-4} \mathrm{M} / \mathrm{s}}{(0.08 \mathrm{M})(0.034 \mathrm{M})}=0.08 / \mathrm{M} \cdot \mathrm{~s}
$$

First-Order Reactions

$$
\begin{aligned}
& \mathrm{A} \longrightarrow \text { product } \quad \text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} \quad \text { rate }=k[\mathrm{~A}] \\
& k=\frac{\text { rate }}{[\mathrm{A}]}=\frac{M / s}{M}=1 / \mathrm{s} \text { or s }^{-1}-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]
\end{aligned}
$$

[A] is the concentration of A at any time t
$[\mathrm{A}]_{0}$ is the concentration of A at time $t=0$

$$
\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t
$$

Decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$

The reaction $2 \mathrm{~A} \longrightarrow \mathrm{~B}$ is first order in A with a rate constant of $2.8 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$. How long will it take for A to decrease from 0.88 M to 0.14 M ?
$\ln [A]=\ln [A]_{0}-k t$

$$
\begin{aligned}
& {[\mathrm{A}]_{0}=0.88 \mathrm{M}} \\
& {[\mathrm{~A}]=0.14 \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
k t & =\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}] \\
t & =\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]}{k}=\frac{\ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}}{k}=\frac{\ln \frac{0.88 A M}{0.14 M}}{2.8 \times 10^{-2} \mathrm{~s}^{-1}}=66 \mathrm{~s}
\end{aligned}
$$

First-Order Reactions

The half-life, $t_{1 / 2}$, is the time required for the concentration of a reactant to decrease to half of its initial concentration.

$$
\begin{aligned}
& t_{1 / 2}=t \text { when }[\mathrm{A}]=[\mathrm{A}]_{0} / 2 \\
& t_{1 / 2}=\frac{\ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{0} / 2}}{k}=\frac{\ln 2}{k}=\frac{0.693}{k}
\end{aligned}
$$

What is the half-life of $\mathrm{N}_{2} \mathrm{O}_{5}$ if it decomposes with a rate constant of $5.7 \times 10^{-4} \mathrm{~s}^{-1}$?

$$
t_{1 / 2}=\frac{\ln 2}{k}=\frac{0.693}{5.7 \times 10^{-4} \mathrm{~s}^{-1}}=1200 \mathrm{~s}=20 \text { minutes }
$$

How do you know decomposition is first order?

First-order reaction $\mathrm{A} \longrightarrow$ product | $\begin{array}{c}\# \text { of } \\ \text { half-lives }\end{array}$ | | |
| :---: | :---: | :---: |
| 1 | | $\frac{[\mathrm{~A}]=[\mathrm{A}]_{0} / n}{2}$ |
| 2 | | 4 |
| 3 | 8 | |
| 4 | 16 | |

Second-Order Reactions

$$
\begin{aligned}
& \mathrm{A} \longrightarrow \text { product rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} \quad \text { rate }=k[\mathrm{~A}]^{2} \\
& k=\frac{\text { rate }}{[\mathrm{A}]^{2}}=\frac{M / s}{M^{2}}=1 / \mathrm{M} \cdot \mathrm{~s} \quad-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2} \\
& \frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+k t \quad \begin{array}{l}
{[\mathrm{A}] \text { is the concentration of } \mathrm{A} \text { at any time } t} \\
{[\mathrm{~A}]_{0} \text { is the concentration of } \mathrm{A} \text { at time } t=0}
\end{array} \\
& t_{1 / 2}=t \text { when }[\mathrm{A}]=[\mathrm{A}]_{0} / 2
\end{aligned}
$$

Zero-Order Reactions

$$
\begin{array}{lll}
\mathrm{A} \longrightarrow \text { product } & \text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} & \text { rate }=k[\mathrm{~A}]^{0}=k \\
k=\frac{\text { rate }}{[\mathrm{A}]^{0}}=\mathrm{M} / \mathrm{s} & -\frac{\Delta[\mathrm{A}]}{\Delta t}=k
\end{array}
$$

$$
[\mathrm{A}]=[\mathrm{A}]_{0}-k t
$$

[A] is the concentration of A at any time t
$[\mathrm{A}]_{0}$ is the concentration of A at time $t=0$
$t_{1 / 2}=t$ when $[\mathrm{A}]=[\mathrm{A}]_{0} / 2$

$$
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}
$$

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions

Concentration-Time

Order Rate Law Equation Half-Life

$$
\begin{array}{llll}
0 & \text { rate }=k & {[\mathrm{~A}]=[\mathrm{A}]_{0}-k t} & t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k} \\
1 & \text { rate }=k[\mathrm{~A}] & \ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t & t_{1 / 2}=\frac{\ln 2}{k} \\
2 & \text { rate }=k[\mathrm{~A}]^{2} & \frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+k t & t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
\end{array}
$$

$$
A+B \longrightarrow C+D
$$

Reaction progress

Endothermic Reaction

Reaction progress

The activation energy $\left(E_{a}\right)$ is the minimum amount of energy required to initiate a chemical reaction.

Temperature Dependence of the Rate Constant

Temperature

$$
k=A \cdot \exp \left(-E_{\alpha} / R T\right)
$$

(Arrhenius equation)
E_{a} is the activation energy $(\mathrm{J} / \mathrm{mol})$
R is the gas constant $(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol})$
T is the absolute temperature
A is the frequency factor

$$
\ln k=\ln A-E_{a} / R T
$$

$\ln k=-\frac{E_{a}}{R} \frac{1}{T}+\ln A$

2-Arrhenius Equation

$$
\ln \left(k_{2} / k_{1}\right)=E a / R\left[\left(T_{2}-T_{1}\right) / T_{2} T_{1}\right]
$$

EX:

*The activation energy of a certain reaction is $76.7 \mathrm{KJ} / \mathrm{mol}$ How many times faster will the reaction occur at $50^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$?

Solution

$$
\ln \left(k_{2} / k_{1}\right)=(E a / R)\left[\left(T_{2}-T_{1}\right) / T_{2} T_{1}\right]
$$

$\ln \left(k_{2} / k_{1}\right)=[(76.7 \times 1000) / 8.314][(323-273) / 323 \times 273]$

Ln $\mathrm{k}_{2} / \mathrm{k}_{1}=5.23$

$$
\begin{aligned}
& \hline k_{2} / k_{1}=187 \\
& \hline \hline k_{2}=187 k_{1} \\
& \hline
\end{aligned}
$$

No products formed

Reaction Mechanisms

The overall progress of a chemical reaction can be represented at the molecular level by a series of simple elementary steps or elementary reactions.

The sequence of elementary steps that leads to product formation is the reaction mechanism.

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)
$$

$\mathrm{N}_{2} \mathrm{O}_{2}$ is detected during the reaction!
Elementary step: $\quad \mathrm{NO}+\mathrm{NO} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{2}$

+ Elementary step: $\quad \frac{\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}}{\text { Overall reaction: }} \quad 2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$

Intermediates are species that appear in a reaction mechanism but not in the overall balanced equation.
An intermediate is always formed in an early elementary step and consumed in a later elementary step.

Elementary step:

+ Elementary step:
Overall reaction:

The molecularity of a reaction is the number of molecules reacting in an elementary step.

- Unimolecular reaction - elementary step with 1 molecule
- Bimolecular reaction - elementary step with 2 molecules
- Termolecular reaction - elementary step with 3 molecules

Rate Laws and Elementary Steps

Unimolecular reaction $\quad \mathrm{A} \longrightarrow$ products \quad rate $=k[\mathrm{~A}]$
Bimolecular reaction $\mathrm{A}+\mathrm{B} \longrightarrow$ products rate $=k[\mathrm{~A}][\mathrm{B}]$
Bimolecular reaction $\quad \mathrm{A}+\mathrm{A} \longrightarrow$ products \quad rate $=k[\mathrm{~A}]^{2}$
Writing plausible reaction mechanisms:

- The sum of the elementary steps must give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally.

The rate-determining step is the slowest step in the sequence of steps leading to product formation.

The experimental rate law for the reaction between NO_{2} and CO to produce NO and CO_{2} is rate $=k\left[\mathrm{NO}_{2}\right]^{2}$. The reaction is believed to occur via two steps:

$$
\begin{array}{ll}
\text { Step 1: } & \mathrm{NO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+\mathrm{NO}_{3} \\
\text { Step 2: } & \mathrm{NO}+\mathrm{CO} \longrightarrow \mathrm{NO}+\mathrm{CO}_{2}
\end{array}
$$

What is the equation for the overall reaction?

$$
\mathrm{NO}_{2}+\mathrm{CO} \longrightarrow \mathrm{NO}+\mathrm{CO}_{2}
$$

What is the intermediate?

$$
\mathrm{NO}_{3}
$$

What can you say about the relative rates of steps 1 and 2 ?

> rate $=k\left[\mathrm{NO}_{2}\right]^{2}$ is the rate law for step 1 so step 1 must be slower than step 2

A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed.

$$
k=A \cdot \exp \left(-E_{a} / R T\right) \quad E_{a} \downarrow \quad k \uparrow
$$

rate $_{\text {catalyzed }}>$ rate $_{\text {uncatalyzed }}$

$$
E_{\mathrm{a}}^{\prime}<E_{\mathrm{a}}
$$

Catalysts

> Catalyst - substance that increases the rate of a reaction without undergoing permanent chemical change itself.

*A catalyst lowers the activation energy for the reaction.

Usually, by providing a completely different mechanism . (Alters the reaction mechanism)
*At equilibrium the catalyst speeds up the forward and backward reactions (does not affect the equilibrium position).

In heterogeneous catalysis, the reactants and the catalysts are in different phases.

- Haber synthesis of ammonia
- Ostwald process for the production of nitric acid
- Catalytic converters

In homogeneous catalysis, the reactants and the catalysts are dispersed in a single phase, usually liquid.

- Acid catalysis
- Base catalysis

Haber Process

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \frac{\mathrm{Fe} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{K}_{2} \mathrm{O}}{\text { catalyst }} 2 \mathrm{NH}_{3}(\mathrm{~g})$

Ostwald Process

$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { Pt catalyst }} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)
$$

$2 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}\left(\eta \longrightarrow \mathrm{HNO}_{2}(a q)+\mathrm{HNO}_{3}(a q)\right.$

Pt-Rh catalysts used in Ostwald process

Hot Pt wire over NH_{3} solution

Catalytic Converters

$\mathrm{CO}+$ Unburned Hydrocarbons $+\mathrm{O}_{2} \xrightarrow[\text { converter }]{\text { catalytic }} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
2 \mathrm{NO}+2 \mathrm{NO}_{2} \xrightarrow[\text { converter }]{\text { catalytic }} 2 \mathrm{~N}_{2}+3 \mathrm{O}_{2}
$$

Enzyme Catalysis

Reaction progress

Reaction progress
rate $=\frac{\Delta[\mathrm{P}]}{\Delta t}$
rate $=k[E S]$

[S]

