

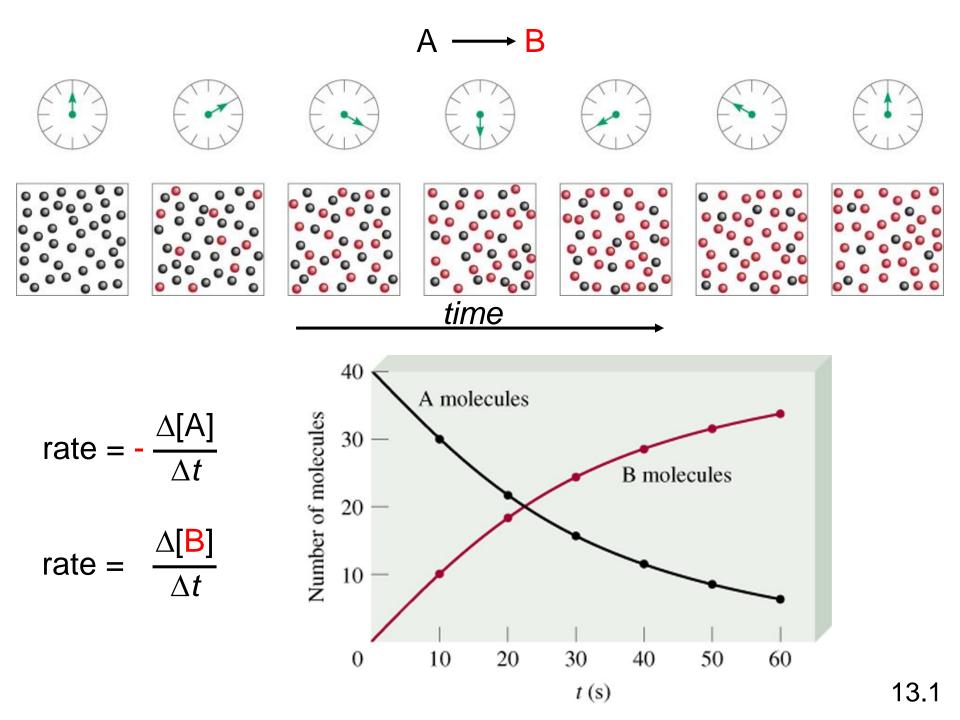
Chemical Kinetics

Chapter 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics

Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed?

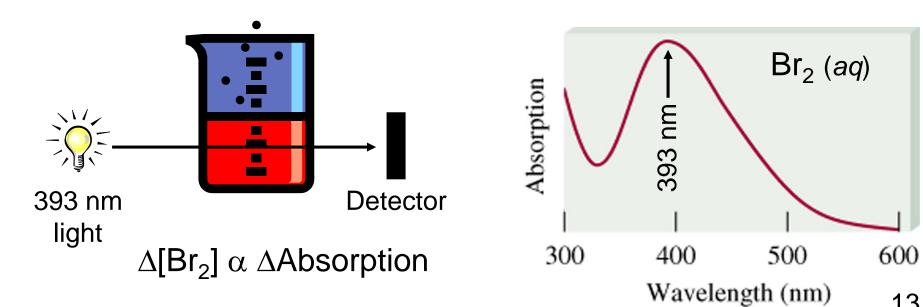

Reaction rate is the change in the concentration of a reactant or a product with time (M/s).

 $A \longrightarrow B$

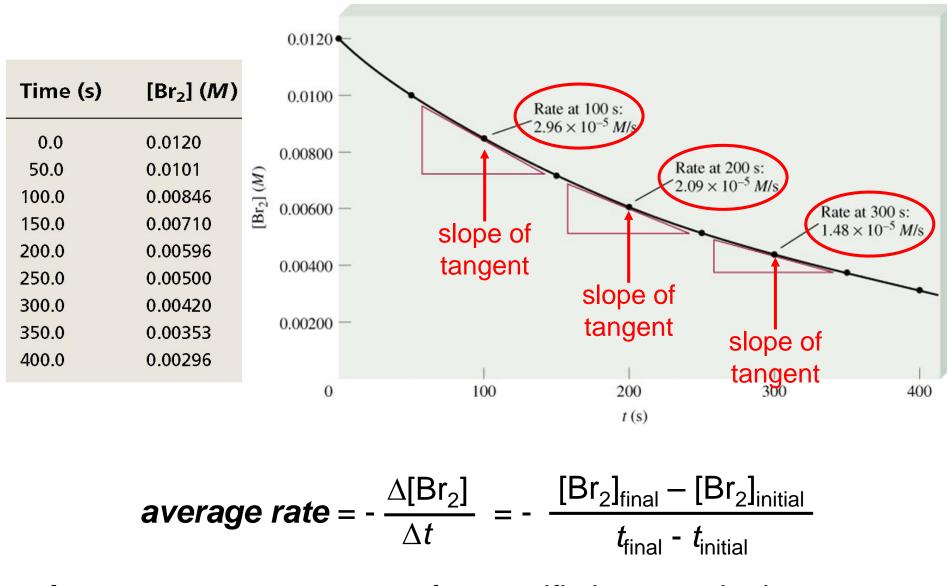
rate =
$$\frac{\Delta[A]}{\Delta t}$$

rate = $\frac{\Delta[B]}{\Delta t}$

- $\Delta[A] = \text{change in concentration of } A \text{ over}$ time period Δt
- $\Delta[B] = \text{change in concentration of } B \text{ over}$ time period Δt


Because [A] decreases with time, Δ [A] is negative.

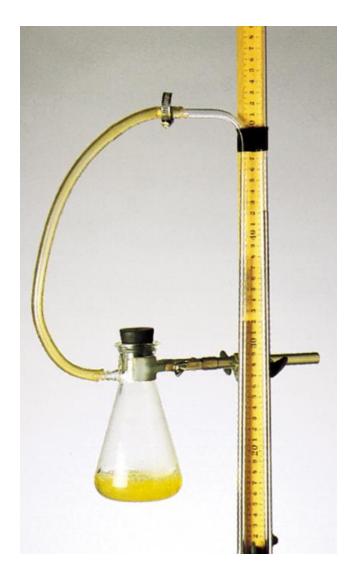
$Br_2(aq) + HCOOH(aq) \longrightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(q)$



time

13.1

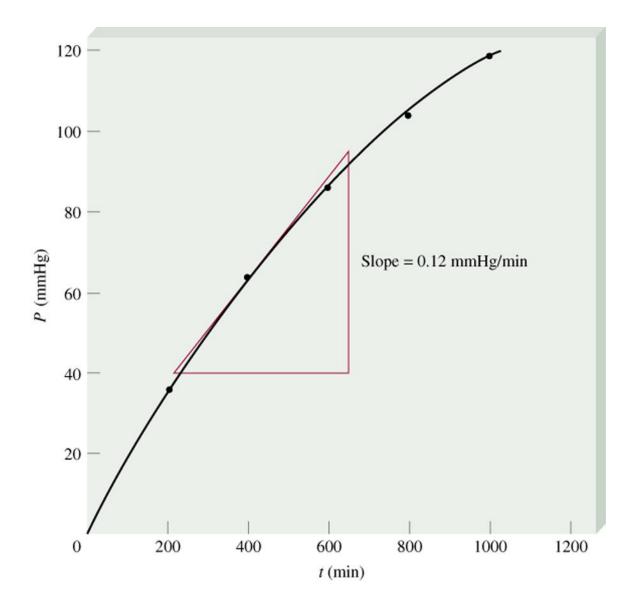
$Br_2(aq) + HCOOH(aq) \longrightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$


instantaneous rate = rate for specific instance in time

Rates of the Reaction Between Molecular Bromine and Formic Acid at 25°C

13.1

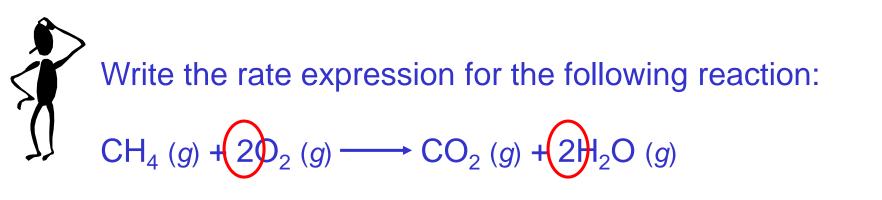
TABLE	Time (s)	[Br ₂] (<i>M</i>)	Rate (<i>M</i> /s)	$k = \frac{\text{rate}}{[\text{Br}_2]} (\text{s}^{-1})$
TA	0.0 50.0 100.0 150.0	0.0120 0.0101 0.00846 0.00710	4.20×10^{-5} 3.52×10^{-5} 2.96×10^{-5} 2.49×10^{-5}	3.50×10^{-3} 3.49×10^{-3} 3.50×10^{-3} 3.51×10^{-3}
	200.0 250.0 300.0 350.0 400.0	0.00596 0.00500 0.00420 0.00353 0.00296	2.49×10^{-5} 2.09×10^{-5} 1.75×10^{-5} 1.48×10^{-5} 1.23×10^{-5} 1.04×10^{-5}	3.51×10^{-3} 3.50×10^{-3} 3.52×10^{-3} 3.48×10^{-3} 3.51×10^{-3}
	rate α [I			5.00×10^{-5} - 4.00×10^{-5} -
	rate = k $r = \frac{rate}{[Br_2]}$	[Br ₂] = <i>rate cor</i>	nstant	$\begin{array}{c} 3.00 \times 10^{-5} - \\ 2.00 \times 10^{-5} - \end{array}$
	- 2-	x 10 ⁻³ s ⁻¹		1.00×10^{-5} - 0 0.00

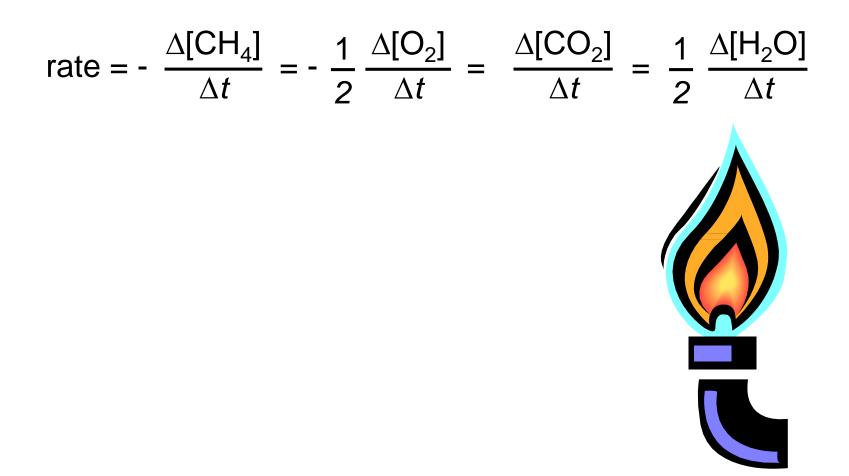

0.0100

$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$						
PV = nRT						
$P = \frac{n}{V}RT = [O_2]RT$						
$[O_2] = \frac{1}{RT} P$						
Λ [O ₂] 1 Δ P						
rate = $\frac{\Delta[O_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P}{\Delta t}$						

measure ΔP over time

 $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$


Reaction Rates and **Stoichiometry**


 $2A \longrightarrow B$

Two **moles of A** disappear for each **mole of B** that is formed.

rate =
$$-\frac{1}{2} \frac{\Delta[A]}{\Delta t}$$
 rate = $\frac{\Delta[B]}{\Delta t}$

$$aA + bB \longrightarrow cC + dD$$

rate = $-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$

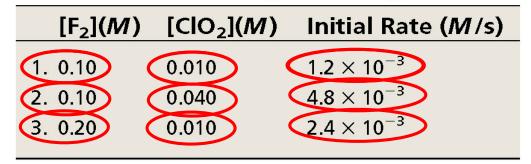
The Rate Law

The *rate law* expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$aA + bB \longrightarrow cC + dD$$

Rate = k [A] B]

reaction is **xth order** in **A** reaction is **yth order** in **B** reaction is **(x +y)th order overall**

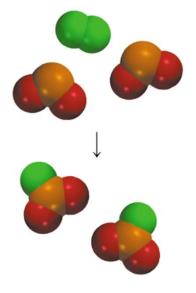

$$F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$$

rate = $k [F_2]^{\times} [ClO_2]^{\vee}$

 $2.4 \times 10^{-3} = k [0.2]^{x} [0.01]^{y}$

 $1.2 \times 10^{-3} = k [0.1]^{x} [0.01]^{y}$

Table 13.2Rate Data for theReaction between F2 and ClO2



 $2 = 2^{x}$ X =1 $4.8 \times 10^{-3} = k [0.1]^{x} [0.04]^{y}$ $1.2 \times 10^{-3} = k [0.1]^{x} [0.01]^{y}$ $4 = 4^{y}$ V =1

rate = $k [F_2][CIO_2]$ $K = rate / [F_2][CIO_2]$

Rate Laws

- Rate laws are **always determined experimentally**.
- Reaction order is always defined in terms of reactant (not product) concentrations.
- The order of a reactant **is not** related to the stoichiometric coefficient of the reactant in the balanced chemical equation.

$$F_{2}(g) + 2 CIO_{2}(g) \longrightarrow 2FCIO_{2}(g)$$

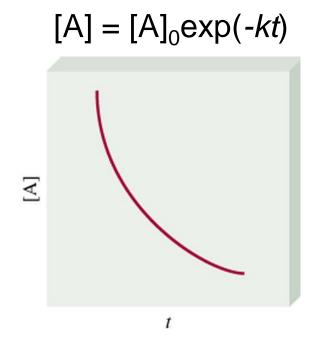
rate = $k [F_{2}][CIO_{2}]^{1}$

Determine the rate law and calculate the rate constant for the following reaction from the following data: $S_2O_8^{2-}(aq) + 3I^-(aq) \longrightarrow 2SO_4^{2-}(aq) + I_3^-(aq)$

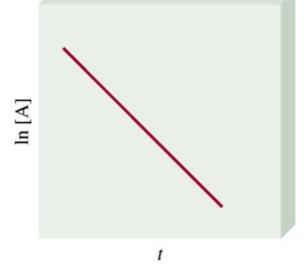
Experiment	[S ₂ O ₈ ²⁻]	[I ⁻] Initial Rate (<i>M</i> /s)	
1	0.08	0.034	2.2 x 10 ⁻⁴
2	0.08	0.017	1.1 x 10 ⁻⁴
3	0.16	0.017	2.2 x 10 ⁻⁴

rate = $k [S_2O_8^{2-}]^x [I^-]^y$ y = 1 x = 1rate = $k [S_2O_8^{2-}][I^-]$

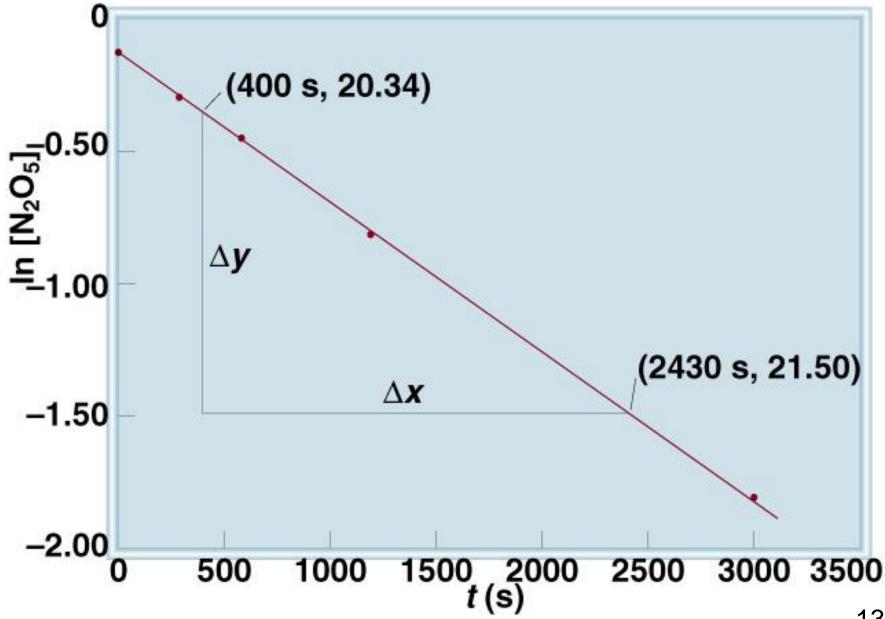
Double [I⁻], rate doubles (experiment 1 & 2)


Double [S₂O₈²⁻], rate doubles (experiment 2 & 3)

$$k = \frac{\text{rate}}{[S_2O_8^{2-}][I^-]} = \frac{2.2 \times 10^{-4} \, \text{M/s}}{(0.08 \, \text{M})(0.034 \, \text{M})} = 0.08/\text{M} \cdot \text{s}$$


First-Order Reactions

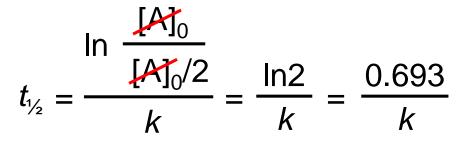
$$A \longrightarrow \text{product} \quad \text{rate} = -\frac{\Delta[A]}{\Delta t} \quad \text{rate} = k [A]$$

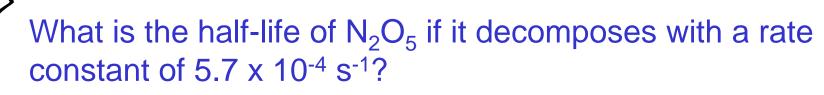

$$k = \frac{\text{rate}}{[A]} = \frac{M/s}{M} = 1/s \text{ or } s^{-1} \quad -\frac{\Delta[A]}{\Delta t} = k [A]$$
[A] is the concentration of A at any time t
[A]₀ is the concentration of A at time t =0

 $\ln[A] = \ln[A]_0 - kt$

Decomposition of N₂O₅

The reaction $2A \longrightarrow B$ is first order in A with a rate constant of 2.8 x 10^{-2} s⁻¹ at 80^oC. How long will it take for A to decrease from 0.88 *M* to 0.14 *M*?

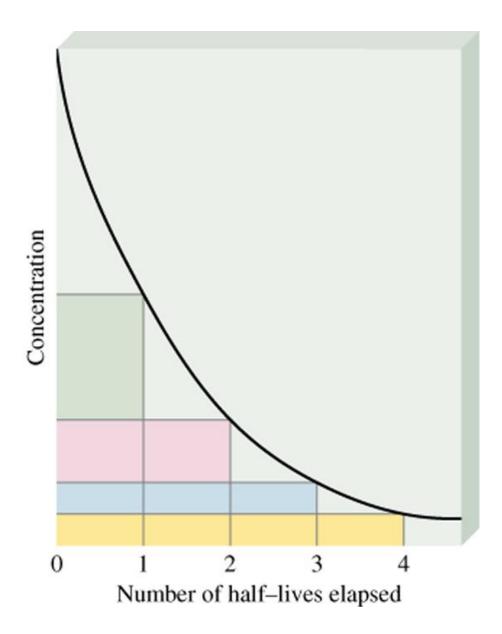

 $\ln[A] = \ln[A]_0 - kt$ [A] = 0.88 M
[A] = 0.14 M

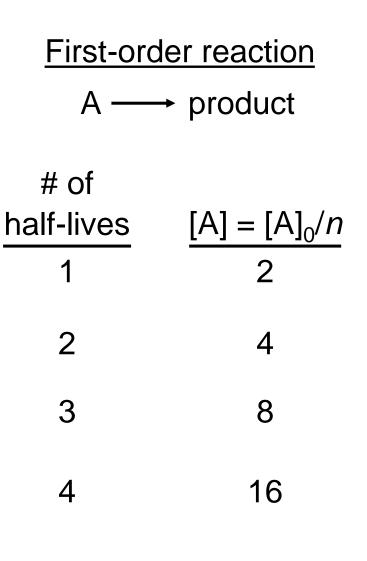

 $kt = \ln[A]_0 - \ln[A]$ $t = \frac{\ln[A]_0 - \ln[A]}{k} = \frac{\ln \frac{[A]_0}{[A]}}{k} = \frac{\ln \frac{0.88 M}{0.14 M}}{2.8 \times 10^{-2} \text{ s}^{-1}} = 66 \text{ s}$

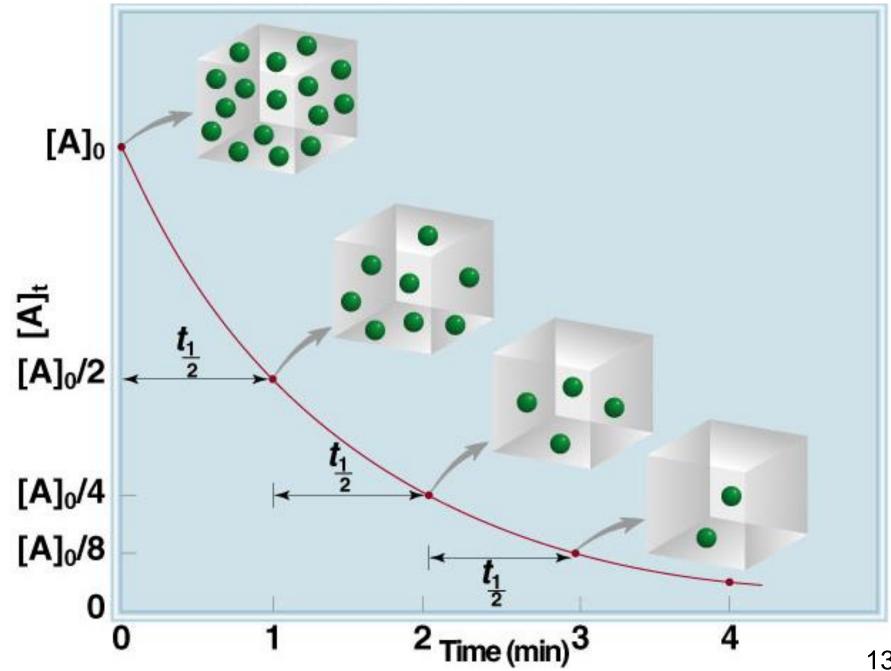
First-Order Reactions

The *half-life*, $t_{\frac{1}{2}}$, is the time required for the concentration of a reactant to decrease to half of its initial concentration.

$$t_{\frac{1}{2}} = t$$
 when [A] = [A]₀/2






$$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{5.7 \times 10^{-4} \text{ s}^{-1}} = 1200 \text{ s} = 20 \text{ minutes}$$

How do you know decomposition is first order?

units of k (s⁻¹) 13.3

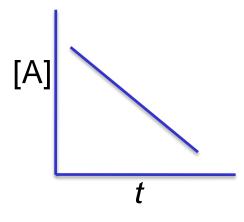
Second-Order Reactions

$$A \longrightarrow \text{product} \quad \text{rate} = -\frac{\Delta[A]}{\Delta t} \quad \text{rate} = k [A]^2$$
$$k = \frac{\text{rate}}{[A]^2} = \frac{M/s}{M^2} = 1/M \cdot s \quad -\frac{\Delta[A]}{\Delta t} = k [A]^2$$

$$\frac{1}{[\mathsf{A}]} = \frac{1}{[\mathsf{A}]_0} + kt$$

[A] is the concentration of A at any time t[A]₀ is the concentration of A at time t = 0

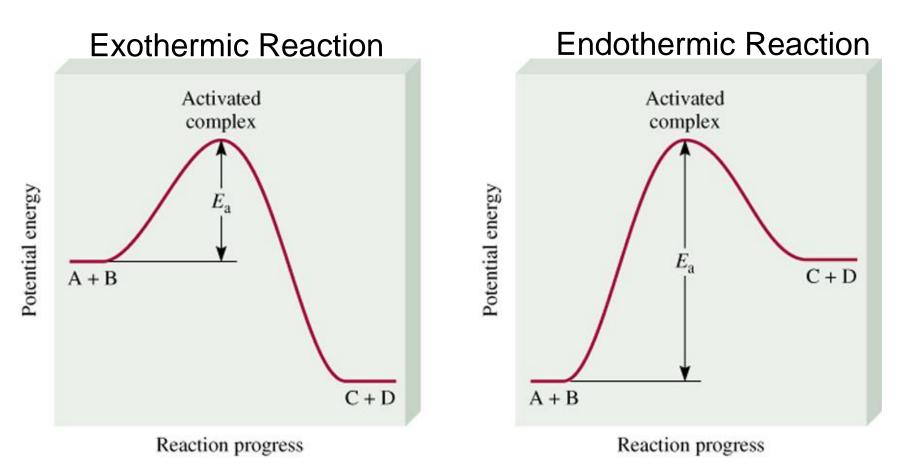
$$t_{\frac{1}{2}} = t$$
 when $[A] = [A]_0/2$
 $t_{\frac{1}{2}} = \frac{1}{k[A]_0}$


Zero-Order Reactions

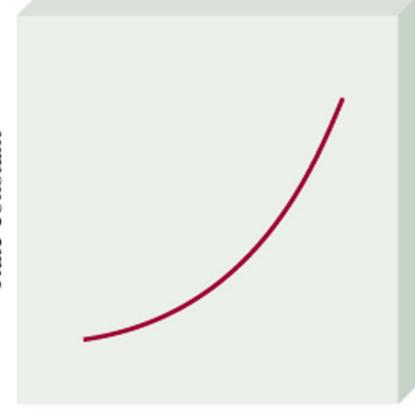
$$A \longrightarrow \text{product} \quad \text{rate} = -\frac{\Delta[A]}{\Delta t} \quad \text{rate} = k [A]^0 = k$$
$$k = \frac{\text{rate}}{[A]^0} = M/s \quad -\frac{\Delta[A]}{\Delta t} = k$$

 $[\mathsf{A}] = [\mathsf{A}]_0 - kt$

[A] is the concentration of A at any time t [A]₀ is the concentration of A at time t = 0

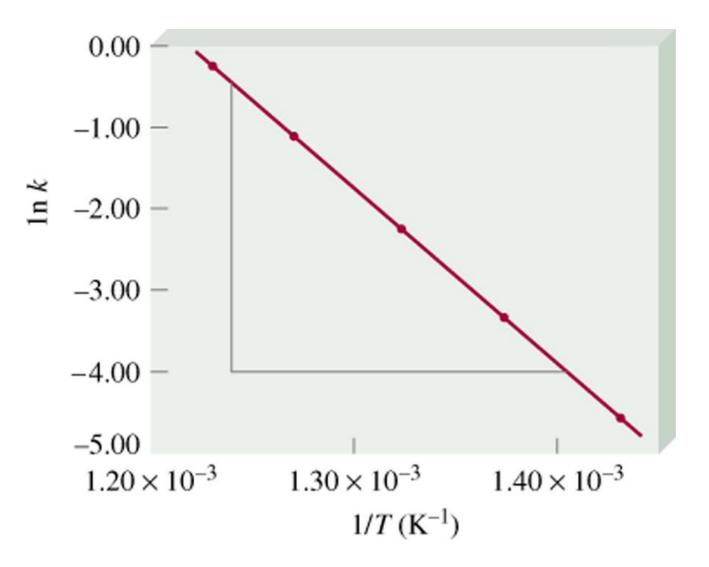

$$t_{\frac{1}{2}} = t$$
 when $[A] = [A]_0/2$
 $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$

Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions


Order	Rate Law	Concentration-Time Equation	Half-Life
0	rate = k	$[A] = [A]_0 - kt$	$t_{\gamma_2} = \frac{[A]_0}{2k}$
1	rate = k [A]	ln[A] = ln[A] ₀ - <i>kt</i>	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$
2	rate = $k [A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$

The *activation energy* (E_a) is the minimum amount of energy required to initiate a chemical reaction.

Temperature Dependence of the Rate Constant



Temperature

k = A • exp(-E_a/RT) (Arrhenius equation)
E_a is the activation energy (J/mol)
R is the gas constant (8.314 J/K•mol)
T is the absolute temperature
A is the frequency factor

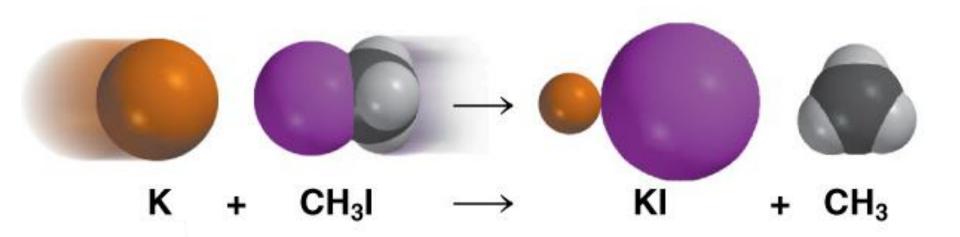
 $\ln k = \ln A - E_a / RT$

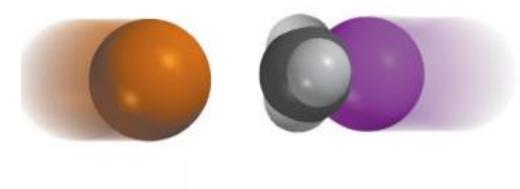
$$\ln k = -\frac{E_a}{R} \frac{1}{T} + \ln A$$

2-Arrhenius Equation

$\ln (k_2/k_1) = Ea / R [(T_2 - T_1) / T_2 T_1]$

♦ The activation energy of a certain reaction is 76.7 KJ/mol How many times faster will the reaction occur at 50°C than at 0°C ?




$$\ln (k_2/k_1) = (Ea / R) [(T_2 - T_1) / T_2T_1]$$

 $\ln (k_2 / k_1) = [(76.7 \times 1000) / 8.314] [(323-273)/323 \times 273]$

 $Ln k_2 / k_1 = 5.23$

$$k_2 / k_1 = 187$$

 $k_2 = 187 k_1$

No products formed

Reaction Mechanisms

The overall progress of a chemical reaction can be represented at the molecular level by a series of simple *elementary steps* or *elementary reactions*.

The sequence of **elementary steps** that leads to product formation is the *reaction mechanism*.

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

 N_2O_2 is detected during the reaction!

Elementary step:NO + NO \rightarrow + Elementary step: $N_2O_2 + O_2 \rightarrow 2NO_2$ Overall reaction: $2NO + O_2 \rightarrow 2NO_2$

Intermediates are species that appear in a reaction mechanism but not in the overall balanced equation.

An **intermediate** is always formed in an early elementary step and consumed in a later elementary step.

Elementary step:NO + NO - N_2O_2 + Elementary step: $N_2O_2 + O_2 - 2NO_2$ Overall reaction: $2NO + O_2 - 2NO_2$

The *molecularity of a reaction* is the number of molecules reacting in an elementary step.

- Unimolecular reaction elementary step with 1 molecule
- **Bimolecular reaction** elementary step with 2 molecules
- **Termolecular reaction** elementary step with 3 molecules

Rate Laws and Elementary Steps

Unimolecular reaction $A \longrightarrow products$ rate = k [A] Bimolecular reaction $A + B \longrightarrow products$ rate = k [A][B] Bimolecular reaction $A + A \longrightarrow products$ rate = k [A]²

Writing plausible reaction mechanisms:

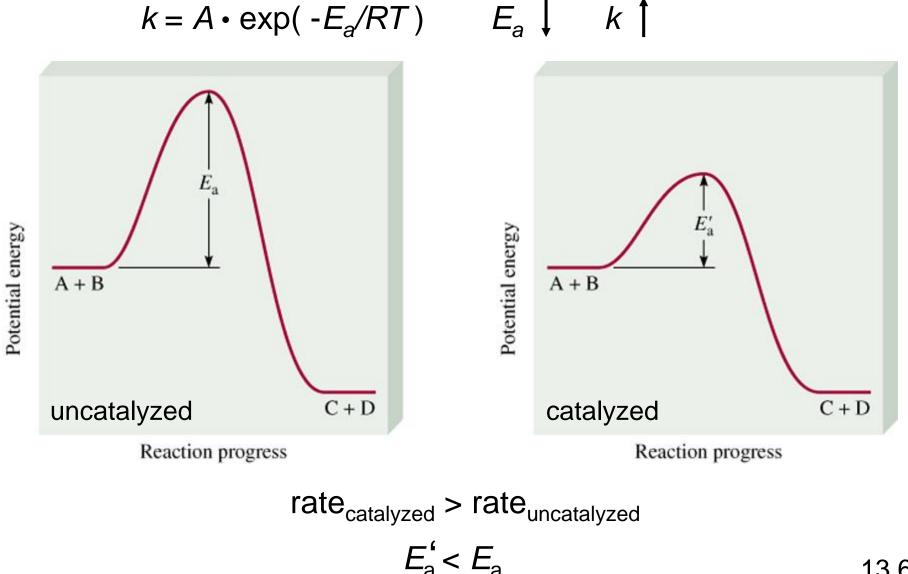
- The sum of the elementary steps **must** give the overall balanced equation for the reaction.
- The rate-determining step should predict the same rate law that is determined experimentally.

The *rate-determining step* is the **slowest** step in the sequence of steps leading to product formation.

The experimental rate law for the reaction between NO₂ and CO to produce NO and CO₂ is rate = $k[NO_2]^2$. The reaction is believed to occur via two steps:

Step 1: $NO_2 + NO_2 \longrightarrow NO + NO_3$ Step 2: $NO_3 + CO \longrightarrow NO_2 + CO_2$

What is the equation for the overall reaction?


$$NO_2 + CO \longrightarrow NO + CO_2$$

What is the intermediate?

 NO_3

What can you say about the relative rates of steps 1 and 2?

rate = $k[NO_2]^2$ is the rate law for step 1 so step 1 must be slower than step 2 A *catalyst* is a substance that increases the rate of a chemical reaction without itself being consumed.

13.6

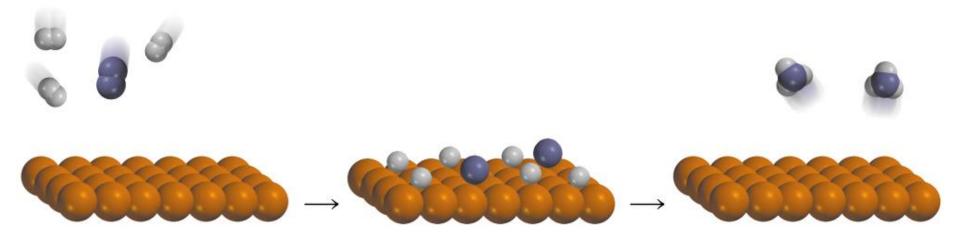
Catalysts

Catalyst – substance that increases the rate of a reaction without undergoing permanent chemical change itself.

A catalyst lowers the activation energy for the reaction.

Usually, by providing a completely different mechanism. (Alters the reaction mechanism)

At equilibrium the catalyst speeds up the forward and backward reactions (does not affect the equilibrium position).


In *heterogeneous catalysis*, the reactants and the catalysts are in different phases.

- Haber synthesis of ammonia
- Ostwald process for the production of nitric acid
- Catalytic converters

In *homogeneous catalysis*, the reactants and the catalysts are dispersed in a single phase, usually liquid.

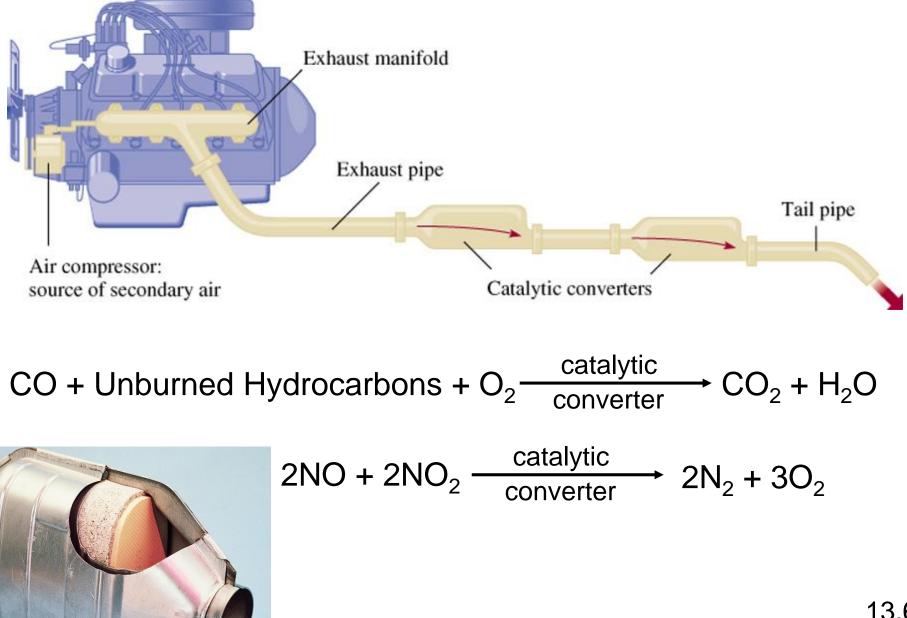
- Acid catalysis
- Base catalysis

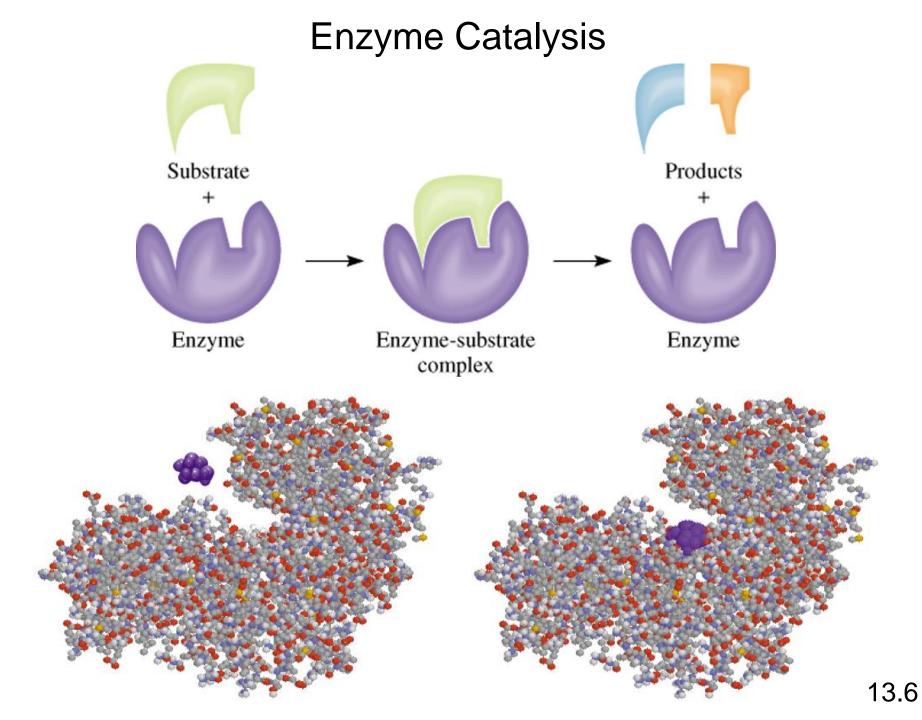

Haber Process

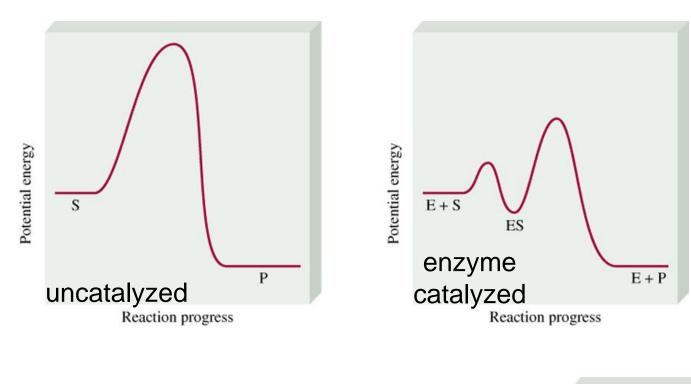

$$N_2(g) + 3H_2(g) \xrightarrow{Fe/Al_2O_3/K_2O} 2NH_3(g)$$

Ostwald Process

 $4NH_{3}(g) + 5O_{2}(g) \xrightarrow{Pt \text{ catalyst}} 4NO(g) + 6H_{2}O(g)$ $2NO(g) + O_{2}(g) \longrightarrow 2NO_{2}(g)$ $2NO_{2}(g) + H_{2}O(l) \longrightarrow HNO_{2}(aq) + HNO_{3}(aq)$




Pt-Rh catalysts used in Ostwald process



Hot Pt wire over NH₃ solution 13.6

Catalytic Converters

rate =
$$\frac{\Delta[P]}{\Delta t}$$

rate = *k* [ES]

All active sites Rate of product formation are occupied at and beyond this substrate concentration [S]